
SIAM J. SCI. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1613–1636

MULTIGRID FOR HIGH-DIMENSIONAL ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS ON NON-EQUIDISTANT GRIDS∗

H. BIN ZUBAIR† , C. W. OOSTERLEE‡ , AND R. WIENANDS§

Abstract. This work presents techniques, theory, and numbers for multigrid in a general d-
dimensional setting. The main focus of this paper is the multigrid convergence for high-dimensional
partial differential equations on non-equidistant grids such as may be encountered in a sparse-grid
solution. As a model problem we have chosen the anisotropic stationary diffusion equation on a rect-
angular hypercube. We present some techniques for building the general d-dimensional adaptations
of the multigrid components and propose grid-coarsening strategies to handle anisotropies that are
induced due to discretization on a non-equidistant grid. Apart from the practical formulas and tech-
niques, we present—in detail—the smoothing analysis of the point ω-red-black Jacobi method for a
general multidimensional case. We show how relaxation parameters may be evaluated efficiently and
used for better convergence. This analysis incorporates full and partial doubling and quadrupling
coarsening strategies as well as the second- and the fourth-order finite difference operators. Finally
we present some results derived from numerical experiments based on the test problem.
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1. Introduction. Multidimensional partial differential equations have diverse
applications in various fields of applied sciences, including financial engineering [8],
molecular biology [3], and quantum dynamics [1, 21]. There are quite a few fast and
efficient solution techniques for partial differential equations (henceforth PDEs) of
which multigrid ranks among the best. Multigrid is a well-known iterative procedure
for the solution of large and sparse linear systems that arise from various kinds of
PDE discretizations. The existing literature on the multigrid treatment of various
problems, however, rarely explores issues that arise out of growth in the dimensionality
of the problem. The implications of dimensionality growth include deterioration of
the multigrid convergence rate, impractical storage requirements, and huge amounts
of CPU time for single grid solution methods. Our main emphasis in this paper lies on
the first challenge. We abbreviate multigrid for d-dimensional PDEs as d-multigrid.
In this paper d represents both abstract dimensionality and dimensions. So, e.g., 3d
is to be interpreted as 3-dimensional.

The major hinderance in the numerical solution of multidimensional PDEs is the
so-called curse of dimensionality, which implies that with the growth in dimensions
we have an exponential growth in the number of grid points. This increases the
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computational cost of many good algorithms. Although we do not address this issue
in particular, we would like to stress that a way to handle dimensionality is the sparse-
grid method [9, 21]. One of the characteristics of these sparse grids is that these grids
are essentially non-equidistant, and therefore efficient solution methods for this type
of grid are quite important.

A multigrid treatment of high-dimensional PDEs based on hyperplane relaxation
has been proposed by Reisinger and Wittum in [8]. We present a multigrid treatment
based on point relaxation and partial coarsening schemes. We demonstrate how the
multigrid convergence factor can be brought down for higher d by the suggested
grid-coarsening strategies and a proper choice of the relaxation parameters in the
smoothing process.

The strategy that we suggest in this paper for good multigrid convergence is
that, keeping the point-smoothing method, we coarsen the grid simultaneously along
all of the dimensions where the errors are strongly coupled. We call this strategy
simultaneous partial coarsening. This way we relax the anisotropy at each successive
grid level, until the problem is isotropic to the point where full coarsening is feasible.
Full coarsening from this stage onwards brings the grid to the coarsest possible level,
where we solve exactly. These strategies therefore consist of two main phases: the
partial coarsening phase and the full coarsening phase. We show that multigrid based
on quadrupling (h → 4h) transfers during the partial coarsening phase of the scheme
gives a multigrid speed boost if optimal relaxation parameters are used in the point-
smoothing process. We would like to point out that partial coarsening schemes have
also been put forward by Larsson, Lien, and Yee identifying the conditions for partial
coarsening through local Fourier-smoothing analysis (LFA) [7]. Moreover, the utility
of adaptive grid-coarsening in multigrid has also been demonstrated by Elias, Stubley,
and Raithby and Horton and Vandewalle in [4] and [5], respectively.

Foremost (in section 2) we point out that the Black–Scholes pricing problem PDE
can be reduced to a standard d -dimensional heat equation, indicating the need for
fast solution methods for high-dimensional PDEs of Poisson type. The discretization
and subsequent implementation of a d-dimensional PDE is somewhat involved, and
in section 3 we show how this can be done with Kronecker products. Section 4 deals
with d-multigrid, point-smoothing, coarsening strategies and concludes with a compu-
tational complexity analysis. Next we provide the LFA for the ω-RB Jacobi method
and show how it can be extended to d dimensions. This is section 5. We also point
out here how we incorporate partial doubling and quadrupling in this analysis. This
section concludes with a tabular presentation (up to 6d) of some optimal relaxation
parameters. Finally in the last section we present quite a few versatile numerical
experiments and demonstrate the excellent multigrid convergence that we get.

2. Multi-d equations in finance. The application on which we focus in this
section is the pricing of multiasset options through a Black–Scholes model which is a
high-dimensional parabolic PDE, reducible to the heat equation.

A generalized d-asset Black–Scholes equation reads

∂V

∂t
+

1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+ r

d∑
i=1

Si
∂V

∂Si
− rV = 0,(2.1)

(0 < S1, . . . , Sd < ∞, 0 � t < T ).

V stands for the option price; Si are the d underlying asset prices; t is the current
time; ρij are the correlation coefficients between the Wiener processes modeling the
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movement of the price of the ith and the jth assets; σi is the volatility of the ith
asset price; r is the risk-free interest rate. For pricing options on a basket of d assets,
it has been shown [6, 20] that (2.1) under the following transform of the asset price Si:

yi =
1

σi

(
r − σi

2

2

)
τ +

1

σi
lnSi, i = 1, 2, . . . , d,(2.2)

τ = T − t

(T is a constant and represents the maturity time of the option) yields the equation

(2.3)
∂V

∂τ
=

1

2

d∑
i=1

∂2V

∂xi
2
, −∞ < xi < ∞, 0 < τ � T,

which we identify as the heat-conduction equation in d dimensions. When discretized
by the implicit Crank–Nicolson scheme, we get a discrete s.p.d. operator. It is worth-
while to mention that the time discretization adds to the positivity of the main diag-
onal of the discrete operator, and so the stationary diffusion equation serves well as
a limiting worst case, in the study of convergence behavior.

3. The discretization. We first recall that discrete operators can be imple-
mented in two different ways. One is the stencil method, and the other is the matrix
method. The stencil method saves storage but is inherently difficult to implement due
to the visual constraints—imposed by high dimensionality—on the problem. There-
fore, to circumvent the complicated implementation issues we use matrices (in sparse
storage formats), and here we present some matrix generation formulas based on
Kronecker tensor products.

3.1. The continuous problem and its discretization scheme. For analysis
and experimentation we choose the d -dimensional stationary diffusion equation, with
Dirichlet boundary conditions, to serve as our model problem. In what follows x is
a d -tuple x = (x1, x2, . . . , xd), and {ai, bi, εi} ∈ R, with εi > 0. The continuous
problem reads:

(3.1) −Lu(x) = −
d∑

i=1

εi
∂

∂xi
u(x) = fΩ(x), x ∈ Ω =

d∏
i=1

(ai, bi) ⊂ R
d,

u(x) = fΓ(x), x ∈ Γ = ∂Ω (xi ∈ {ai, bi}).

Subsequently, the discrete counterpart reads

−Lhuh(x) = fΩ
h (x), x ∈ Ωh =

d∏
i=1

(ai, bi) ⊂ R
d,(3.2)

uh(x) = fΓ
h (x), x ∈ Γh = ∂Ωh (xi ∈ {ai, bi}).

The discretization of the Laplacian Lh is chosen to be either O(h2) accurate, giving
a (2d + 1)-point stencil, or else O(h4) accurate, with a (4d + 1)-point long stencil
for all interior points. The number of cells in the discretization grid along the ith
dimension—represented by Ni—need not be equal to the number of cells along (say)
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the jth dimension. So with hi = (bi−ai)/Ni—the mesh size along the ith dimension—
the 1d variants of these multidimensional stencils are(

∂2

∂x2
i

)
h

� 1

h2
i

[1 − 2 1] + O(h2),(3.3) (
∂2

∂x2
i

)
h

� 1

12h2
i

[−1 16 − 30 16 − 1] + O(h4).(3.4)

It has to be noted that the O(h4) long stencil uses the so-called ghost points (points
outside the discretization grid) when applied to points near the boundary. To allevi-
ate this problem we have the option of employing a different stencil, having shorter
connections at the boundary. Thus we can either employ the simple O(h2) operator at
the boundaries or else use a different scheme with one-sided differencing. In this work,
we use the second-order stencil, for points near the boundaries. The discretization
given by (3.2) leads to the following matrix equation:

(3.5) Ahuh = bh.

3.2. The discretization matrix Ah and implementation in arbitrary di-
mensions. As we have Dirichlet boundary conditions, we eliminate boundary points
from the matrix Ah. This scheme results in a total of M unknowns—(M ×M) being
the order of the discretization matrix Ah—with

M =

d∏
i=1

(Ni − 1).

We represent the discretization grid G by

(3.6) G = [N1, N2, . . . , Nd].

The discrete matrix Ah in (3.5) can be built by the following tensor product formula:

(3.7) Ah =

d∑
i=1

{
d−1⊗
j=i

I(d+i−j) ⊗ Li ⊗
i−1⊗
j=1

I(i−j)

}
.

⊗ is the Kronecker tensor product of matrices. Likewise
⊗

is the cumulative Kro-
necker tensor product. For example,

3⊗
i=1

Pi = P1 ⊗ P2 ⊗ P3.

Kronecker tensor products are noncommutative and associative operations (see
[10]). The order is determined by the subscripts here, and the associative hierarchy
does not matter.

In (3.7), Ik (k ∈ {1, 2, . . . , d}) is the identity matrix of order (Nk − 1), and Li is
the one-dimensional discrete-Laplacian matrix, constructed through (3.3) and (3.4)
as illustrated by the following example. Suppose that G = [8, 6] (see (3.6)) is the
grid that we have for a certain 2d problem; then we construct Li by writing down
the discrete stencil in (3.4) for each point, including the boundaries. Then we isolate
the left and the right boundary vectors (as shown below) and incorporate them in the
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right-hand side bh. For example, L1 is the following matrix (without the left and the
right boundary vectors) according to the choice O(h4) of the computational accuracy:

ε1

12h2
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
−1

0
0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−24 12 0 0 0 0 0
16 −30 16 −1 0 0 0
−1 16 −30 16 −1 0 0

0 −1 16 −30 16 −1 0
0 0 −1 16 −30 16 −1
0 0 0 −1 16 −30 16
0 0 0 0 0 12 −24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

L1

0
0
0
0
0

−1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

1d discrete Laplacian matrices constructed in this way for each grid dimension are
to be substituted in (3.7) for building up the discrete d-dimensional operator matrix
Ah. (The O(h2) discretization is handled similarly.)

3.3. The right-hand side bh. The right-hand side bh of (3.5) consists of the
source function fΩ

h and the boundary function fΓ
h .

It is important to define a consistent grid-point enumeration in high dimensions.
In our enumeration scheme we represent the entire set of indices by an index matrix
I, where each row (a d-tuple) represents the index of a grid point and counts in
descending order, i.e., from right to left, for the ascending order of the dimensions.
This formulation of the index set is the natural extension of the so-called lexicographic
order in 2d. As an illustration of this lexicographic order, we have grid coordinates as
a pair (i2, i1) in 2d and as a triple (i3, i2, i1) in 3d, and thus, generally in d-dimensions,
we have the index of a grid point as (id, i(d−1), . . . , i1); piling them up in lexicographic
order, we get the entire set as

(3.8) I = [ιd ι(d−1) . . . ιi . . . ι2 ι1],

where each ιk is a column vector of length M . Also consider the following definitions,
which we require to build the index set for the interior and the boundary points:

ηi; � ηi = [1, 2, . . . , (Ni − 1)]
T

(i = 1, 2, . . . , d) (see (3.6)),(3.9)

1i; � 1i = [1, 1, . . . , 1]︸ ︷︷ ︸
Total Ni

T
.

We now formulate the columns of I as follows:

(3.10) ιi =

d−1⊗
j=i

1(d+i−j) ⊗ ηi ⊗
i−1⊗
j=1

1(i−j).

At this stage the vector of source function values can be computed as the development
of the index set I is complete. Thus, computing the source function for each row of
I and denoting it by S, we have S = fΩ

I .
Now for computing the contribution of boundaries in bh, recall that we isolated

two column vectors, namely, the left and the right boundary-coefficient vectors from
the 1d Laplacian operators in each dimension. Considering the case of the ith di-
mension, if we denote these by li and ri, respectively, then we can define the ith



1618 H. BIN ZUBAIR, C. W. OOSTERLEE, AND R. WIENANDS

d-dimensional left and right boundary-coefficient vectors, viz., Li and Ri as follows:

Li =

d−1⊗
j=i

1(d+i−j) ⊗ li ⊗
i−1⊗
j=1

1(i−j),(3.11)

Ri =

d−1⊗
j=i

1(d+i−j) ⊗ ri ⊗
i−1⊗
j=1

1(i−j).

The contribution of the boundary values in bh has two parts, i.e., values from the
left boundary and values from the right boundary. We denote the two by BL and BR,
respectively. BL is the cumulative sum of the d left boundaries and likewise for the
right. At this point a word about the boundary-index set is in order. If in (3.8) any ιi
is replaced by a vector of left boundary value, we get a left boundary index set, and if
we replace it by a vector of right boundary value, we get a right boundary index set.
If

ILi
= [ιd ι(d−1) . . . ι(i− 1) ai ι(i + 1) . . . ι2 ι1],

IRi = [ιd ι(d−1) . . . ι(i− 1) bi ι(i + 1) . . . ι2 ι1],

then

BL =

d∑
i=1

(Li � fΓ
ILi

),(3.12)

BR =

d∑
i=1

(Ri � fΓ
IRi

).

� represents componentwise multiplication of the operand column vectors.
Thus we have from the right-hand side of (3.5)

(3.13) bh = S + BL + BR,

and the discretization is complete.

4. d-multigrid based on point smoothing. The core of this work is the
coarsening strategies proposed here, which are based on a mixture of doubling (h →
2h) and quadrupling (h → 4h) grid transfers and which—coupled with point-based
relaxation—yield very efficient multigrid methods for problems on non-equidistant
grids. The aim is to close upon a robust method that applies for general grid-aligned
anisotropies in d dimensions.

Like basic multigrid for two- and three-dimensional problems, d -multigrid also
consists of the essential components, the smoothing method and the coarse grid cor-
rection. The well-known algorithm of multigrid as presented in [14] does not change
for the higher-dimensional case; however, the components have to be generalized to
match this new situation. General multigrid algorithms are presented in the literature
[11, 12, 13, 14, 15, 17].

For anisotropic problems it is a choice to keep the point-smoothing method and to
coarsen only along a subset of the dimensions, precisely, along those that are strongly
coupled. This ensures that coarsening takes place only where the errors are smooth.
For nearly isotropic problems the best strategy is to combine the point-smoothing
method with doubling-based full coarsening and to use the optimal relaxation param-
eters obtained for d dimensions.



MULTIGRID FOR HIGH-DIMENSIONAL PDES 1619

4.1. The relaxation method. Of the many available point-smoothing-based
relaxation methods, we choose the ω-red-black Jacobi method due to its excellent
smoothing effect for problems of the Poisson type. The red-black Jacobi method is
equivalent to the Gauss–Seidel red-black method for the O(h2) (2d + 1)-point dis-
cretization stencil and in that it is commonly abbreviated as GS-RB in the literature.
In this section we assume familiarity with standard GS-RB for 2d problems; see
[11, 14]. ω-RB Jacobi consists of two partial steps, each an ω-Jacobi sweep; the first
one applying to and updating only the red (odd) points and the second one applying
to and updating only the black (even) points in the grid.

From an implementational point of view, this red-black smoothing procedure
which is based on partial steps depends upon a partitioning process by which the grid
G can be dissected into the red part (GR) and the black part (GB). The grid-point
enumeration that we employ in our implementation scheme is such that the points
are arranged linearly (in a column vector) and counted out in lexicographical order
for a d-dimensional grid. The unequal number of cells along different dimensions of
the grid makes this partitioning process somewhat nontrivial. In Appendix A we
present a way to bring about this segregation of odd and even points from a purely
implementational aspect.

We also employ optimal relaxation parameters ωopt in the relaxation process. It is
well known that ω = 1 serves as a good choice for the 2d isotropic case. In the case of
anisotropy and higher dimensions the error-smoothing effect of the relaxation method
can be enhanced by the use of optimal relaxation parameters [19]. This implies that
a search for ωopt pays off. We employ a d-dimensional LFA for this purpose; see
section 5.

4.2. Coarsening strategies to handle anisotropies. We present two grid-
adaptive coarsening procedures as our test cases, both of which have shown excellent
convergence results. We call them strategy 1 and strategy 2. Both of the strategies
are similar in the sense that they consist of two distinct coarsening phases: the par-
tial coarsening phase and the full coarsening phase. The difference is in the partial
coarsening phase, where the transfer type in strategy 1 is doubling (h → 2h) and in
strategy 2 is quadrupling (h → 4h). In the full coarsening phase both of the strategies
are identical and consist of doubling transfers only.

In strategy 1 we first identify the dimension(s) having the strongest coupling.
This is indicated by the magnitude of the coupling factor c̃i defined as

c̃i = εi ×
(

Ni

bi − ai

)2

;

see (3.1) and (3.6). The larger the coupling factor c̃i, the stronger the coupling.
Fourier analysis suggests that all dimensions having a coupling factor c̃i within a range
of 1.3 times the largest coupling factor identified can be doubled simultaneously. This
decision is made (at each successive grid level) and identifies all of those dimensions
along which doubling will take place. Employing this strategy recursively makes
the discrete problem isotropic inasmuch as all coupling factors are within this range;
onwards from here full doubling takes over. Once the coarsest possible grid is reached,
an exact solution takes place. In the last section we evaluate this strategy for the O(h2)
(2d + 1)-point stencil and for the O(h4) (4d + 1)-point long stencil.

In strategy 2 the threshold value is 1.0, which means that we quadruple only
along the dimension(s) which are identified as having the strongest coupling (having
the largest c̃i). This ensures that quadrupling (in comparison with doubling) takes
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place along fewer dimensions. This strategy gives good convergence when employed
in conjunction with optimal relaxation parameters and is cheaper than strategy 1
because of quadrupling in the partial phase. Moreover, we suggest that a strategy
based on quadrupling in the full coarsening phase should not be employed in a general
multidimensional case, as full quadrupling always loses against full doubling and hence
is quite apt to hamper multigrid convergence. See, for an example, section 6, Figure
3.

We take the grid size along each dimension always as a power of 2. When the
anisotropy stems only from discretization on non-equidistant grids, as encountered in
the sparse-grid solution, the sequence of coarse grids generated by the two strategies
are as follows.

Example 1. Suppose that a particular discretization grid for a certain 5d problem
is G = [ 32 8 8 128 32 ]. εi = 1 ∀ i and Ω = (0, 1)5. Then the sequence of grids
that we get is the following:

Strategy 1 Strategy 2
Ω6 = [ 32 8 8 128 32 ]
Ω5 = [ 32 8 8 64 32 ]
Ω4 = [ 32 8 8 32 32 ]
Ω3 = [ 16 8 8 16 16 ]
Ω2 = [ 8 8 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

Ω4 = [ 32 8 8 128 32 ]
Ω3 = [ 32 8 8 32 32 ]
Ω2 = [ 8 8 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

(4.1)

Results for this particular experiment are available in section 6, Figure 4.

4.3. Coarse-grid discretization. An important component in the coarse-grid
correction process is the choice of the coarse-grid operator LH . In this paper we
use the coarse-grid analog of the discrete operator on the fine grid. Once the next
coarser grid is decided, we discretize the Laplacian using the same discrete stencils as
presented in section 3.

A particularly good choice of the coarse-grid operator for the O(h4) accuracy is to
employ the O(h4) long stencil only along the noncoarsened dimensions of the grid and
to discretize with the O(h2) stencil on the coarse grids along the dimensions where
partial coarsening takes place. This has the marked advantage of saving CPU time as
now the coarse-grid operator has increased sparsity. Moreover, on very coarse grids
this is advantageous, because at grid points adjacent to boundary points the long
stencil cannot be applied since it has entries which lie outside the discrete domain,
whereas the O(h2) discretization can be applied throughout the domain. The overall
accuracy remains fourth-order as we have the fourth-order accuracy on the finest grid.
This coarse-grid discretization scheme fits very nicely with the numerical experiments,
and 2-grid and 3-grid analysis (not shown here) confirm this.

We do not use the Galerkin operator because of its disadvantage of being usually
more dense than the simple coarse-grid analog of the fine-grid operator (unless special
transfer operators are employed to generate the coarse-grid operators). In high-d
dimensions this disadvantage becomes more serious and impractical.

4.4. The transfer operators. We employ the d-dimensional analogs of the full-
weighting (FW) restriction operator and of the bilinear interpolation operator in two
dimensions for the intergrid transfers of the grid functions. In this section we present
a tensor formulation to generate the restriction and prolongation operator matrices.
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For completeness we first mention [14] that a 2d FW restriction operator

I2h
h � 1

16

⎡⎣1 2 1
2 4 2
1 2 1

⎤⎦2h

h

is the Kronecker tensor product of the following x1 and x2 directional 1-dimensional
FW operators:

(I2h
h )x1

� 1

4

[
1 2 1

]
, (I2h

h )x2
� 1

4

⎡⎣1
2
1

⎤⎦ .

A formula based on Kronecker tensor products for building up a FW restriction op-
erator matrix R reads

R =
d∏

i=1

(Ri)
ki ,(4.2)

(Ri)
ki =

ki−1∏
l=0

[
d−1⊗
j=i

IN(d+i−j)
⊗ O[

Ni/2
(ki−l−1)

] ⊗ i−1⊗
j=1

I[
N(i−j)/2

k(i−j)
]].

We now define the quantities involved in (4.2) for the dummy subscript a.
Ia is the identity matrix of order (a− 1) × (a− 1).
Oa is the 1d FW restriction operator matrix, order =

(
a
2 − 1

)
× (a− 1).

G = [N1, N2, . . . , Nd], as in (3.6).
T = [k1, k2, . . . , kd] is the coarsening request; ki is the count of (h → 2h) transfers

along the ith dimension. We say that quadrupling takes place along the ith dimension
if ki = 2. For reasons of space it is not possible to verify (in this manuscript) (4.2)
for any realistic example; however, it is trivial to verify the same with a matrix
manipulation software package.

Once the FW restriction operator matrix in d dimensions is set, the prolongation
(d-linear interpolation) operator matrix can be obtained by the following relation:

(4.3) P = 2(
∑d

i=1 ki)(RT ).

A generalized restriction operator (4.2) gives us the freedom to experiment with differ-
ent types of coarsening strategies depending on the grid. Note that the FW restriction
operator given by (4.2) provides the required matrix for any number of coarsenings
along any number of dimensions for an abstract d-dimensional problem.

4.5. Computational work for d-multigrid. The practical feasibility of a d-
multigrid method also has to take into account an estimate of the computational
work that it involves. Following the notation from [11, 14], we call this work estimate
Wl, assuming that a particular multigrid method is based on a hierarchy of grids
(Ωl,Ωl−1, . . . ,Ω1,Ω0), where Ω0 is the coarsest grid. The computational work Wl per
multigrid cycle on Ωl is modeled by the recursion:

(4.4) W1 = W 0
1 + W0, Wk = W k−1

k + γk−1Wk−1 (k = 1, 2, . . . , l).

W k−1
k is the work estimate for a single 2-grid cycle (hk, hk−1) excluding the work

needed to solve the defect equation on Ωhk−1
, and W0 is the work required to solve
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exactly on the coarsest grid. It is reasonable to assume that the multigrid components
(relaxation, computation of defect, and the transfer of grid functions) applied to a
single unknown require a number of arithmetic operations which—independent of k—
is bounded by a small constant C. With Mk the total number of unknowns at grid
level k, we have

W k−1
k � CMk (k = 1, 2, . . . , l).

For a fixed cycle index γ (the number of times the coarse grids are cycled) and with
the work on the coarsest grid neglected, this leads to

(4.5) Wl � C
[
Ml + γMl−1 + γ2Ml−2 + · · · + γl−1M1

]
.

Before we proceed further, we consider it important to point out at this stage that the
coarsening strategies (algorithms) that we use do not employ the same transfers at all
grid levels. Depending on the anisotropy of the system, strategy 1 employs (h → 2h)
transfers (along the strongly coupled dimensions) so that after application of this
strategy at each level the grid comes closer to isotropy. When an acceptable isotropy
is achieved strategy 1 resorts to standard full coarsening until the grid is brought to the
coarsest possible level which the particular discretization allows. Strategy 2 is hybrid
in the sense that it is composed of a mixture of standard and quadrupling transfers;
moreover, it is adaptive just like strategy 1. In strategy 2 we employ full (h → 2h)
transfers when isotropy is achieved, because quadrupling along all dimensions did not
prove good even with the use of optimal relaxation parameters. Note that, for the
type of grid-induced anisotropy encountered in the sparse-grid solution method, the
number of dimensions along which the grid is coarsened increases (or remains constant
in the case of an equidistant grid) at each successive level. This gives the following:

Wl � 2j·s

(2j·s − γ)
CMl,

Wl � τ

(τ − γ)
CMl for γ < τ = 2j·s.(4.6)

Here j represents the number of dimensions coarsened, s = 1 for (h → 2h) transfers,
and s = 2 for quadrupling. The worst case would be when the grid is highly stretched
along a single dimension, which implies that coarsening takes place only along one
dimension, so j = 1. With quadrupling, i.e., s = 2, this still renders τ = 4, which
implies that the complexity of the method is still O(Ml) for γ = 1, 2, 3. This feature
makes quadrupling particularly attractive in higher dimensions for non-equidistant
grids. Strategy 1 also gives an O(Ml) algorithm for γ = 1, 2, 3 as long as j ≥ 2,
whereas for j = 1 one has to apply a V -cycle.

If the problem is isotropic with an equidistant grid, we essentially have s = 1 and
j = d, which gives the work estimates that appear in Table 4.1.

The 2d and 3d results are well known [11], and an estimate for a general d
(isotropic problem on an equidistant grid) can be obtained by setting j = d in (4.6).

This leads us now to apply the standard multigrid procedure to our model prob-
lem as the multigrid components have been adjusted for a general high-dimensional
setting, along with a computational complexity estimate. A LFA of the ω-RB Ja-
cobi method follows, through an implementation of which we derive the relaxation
parameters for our experiments.
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Table 4.1

Multigrid work estimates for the isotropic problem on equidistant grids.

γ d = 2 d = 3 d = 4 d = 5 d = 6

1 4
3
CMl

8
7
CMl

16
15

CMl
32
31

CMl
64
63

CMl

2 2 CMl
4
3
CMl

8
7
CMl

16
15

CMl
32
31

CMl

4 O(Ml log2 Ml) 2 CMl
4
3
CMl

8
7
CMl

16
15

CMl

5. Local Fourier smoothing analysis of the ω-RB Jacobi method. LFA
[2] is a tool for analyzing the convergence behavior of multigrid methods. The finer
details including the validity of LFA along with related theorems and proofs are pre-
sented in [15]. In this section we concentrate on the development of a Fourier repre-
sentation for the ω-RB Jacobi method applied to the model operator from section 3.1,
the definition of the smoothing factor, the evaluation of relaxation parameters, and
extension to a general d-dimensional setting. We assume familiarity with the basics
of this tool; see [11, 12, 14, 15, 17] for the same. For the most part in this section we
carry on the definitions and notations as present in [14, 17, 18, 19].

Consider the d-dimensional anisotropic diffusion operator

(5.1) −
d∑

i=1

εi
∂2

∂x2
i

, with εi > 0.

With respect to the analysis it is more convenient to scale the real positive coefficients
εi as in [18, 19] and to replace (5.1) by

(5.2) −
d∑

i=1

ci
∂2

∂x2
i

, with ci = εi/

d∑
j=1

εj and hence

d∑
i=1

ci = 1.

The partial derivatives are discretized by second- or fourth-order differences (see (3.3),
(3.4)) leading to the discrete counterparts of (5.2) denoted by L2o

h and L4o
h , respec-

tively. In contrast to section 3.1 we assume that we are dealing with the same mesh
size in each space direction, i.e., h = h1 = · · · = hd. Here possible anisotropies
caused by different mesh sizes are modeled by varying the coefficients ci, which is
more appropriate for the analysis.

LFA takes into account only the local nature of the operator. Thus for an effective
analysis through this tool one has to have constant coefficients, and one has to neglect
the boundary effects. More precisely, all occurring operators are extended to an
infinite grid

(5.3) Gh :=
{
x = (x1, . . . , xd)

T
= κh = h (κ1, . . . , κd)

T
: κ ∈ Z

}
,

with mesh size h. The discrete eigenfunctions (Fourier components) of the resulting
infinite grid operators serve as fundamental quantities in LFA; they are obviously
given by

(5.4) ϕ(θ,x) = eiθx/h, x ∈ Gh.

For this analysis we assume that θ varies continously in R
d. As 2π is the period

of ϕ, we are led to the identity:

(5.5) ϕ(θ,x) ≡ ϕ(θ′,x) for x ∈ Gh iff θ = θ′(mod 2π),



1624 H. BIN ZUBAIR, C. W. OOSTERLEE, AND R. WIENANDS

where this difference—of multiples of 2π—is between all of the components of the d-
tuples, (θ & θ′); thus it suffices to consider these functions only for θ ∈ Θ = [−π, π)d.

The corresponding eigenvalues (Fourier symbols) of L2o
h and L4o

h read

L̃2o
h (θ) =

2

h2

(
1 −

d∑
i=1

ci cos (θi)

)
and

L̃4o
h (θ) =

1

6h2

(
15 −

d∑
i=1

ci (16 cos (θi) − cos (2θi))

)
,

respectively.

5.1. High and low Fourier frequencies. If full coarsening (H = 2h or H =
4h in the case of quadrupling) is selected, the Fourier components ϕh(θ,x), with
|θ| := max{|θ1|, . . . , |θd|} ≤ π/2 (or ≤ π/4), are also visible on the coarse grid GH ,

whereas components with |θ| > π/2 (> π/4) coincide with certain ϕh(θ̂,x), where

|θ̂| ≤ π/2 (≤ π/4). This observation leads to the distinction between high and low
Fourier frequencies.

Definition 1 (high and low frequencies for full coarsening). An element θj
(j ∈ {1, . . . , d}) of a Fourier frequency θ is called low if

−π/2 ≤ θj < π/2 (or −π/4 ≤ θj < π/4 in the case of quadrupling) for θ ∈ Θ.

Otherwise it is called high. We speak of a low Fourier frequency θ ∈ Θ, if all of its
elements are low. Otherwise it is named a high frequency.

The distinction obviously depends on the coarsening as, for different coarsening
strategies, different sets of Fourier frequencies are visible on the coarse grid. We define
the set of coordinate indices by J := {1, . . . , d}. In the case of partial coarsening
(compare with section 4.2), the grid is coarsened only in a subset {xj | j ∈ J c ⊂
J } of the coordinate directions and remains fixed in the other coordinates xj , with
j ∈ J f = J \ J c. Especially for two-dimensional problems, this is often called
semicoarsening as well. In this case, we have for the coarse grid mesh size H that
Hj = 2hj (or Hj = 4hj in the case of quadrupling) for j ∈ J c and Hj = hj for j ∈ J f .
Then the definition of high and low frequencies has to be adapted accordingly.

Definition 2 (high and low frequencies for partial coarsening). A Fourier fre-
quency θ ∈ Θ is called low if all elements θj ∈ Ic are low; compare with Definition 1.
Otherwise it is called a high frequency.

5.2. Fourier representation of ω-RB Jacobi. ω-RB Jacobi relaxation con-
sists of two partial steps of ω-Jacobi-type; compare with section 4.1. The iteration
matrix of classical damped Jacobi relaxation is given by Sh = Ih − ωD−1

h Ah, where
Ih denotes the (M × M)-identity matrix and Dh the diagonal part of Ah. Hence,
the Fourier components remain eigenfunctions of ω-Jacobi relaxation. The Fourier
symbols of ω-Jacobi relaxation applied to L2o

h and L4o
h read

A2o(θ, ω) = 1 − ω
h2

2
L̃h(θ) = 1 − ω

(
1 −

d∑
i=1

ci cos (θi)

)
and

A4o(θ, ω) = 1 − ω
6h2

15
L̃h(θ) = 1 − ω

(
1 − 1

15

d∑
i=1

ci (16 cos (θi) − cos (2θi))

)
,

respectively; see [16, 18, 19].
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Fig. 1. Low (white region) and high (shaded region) frequencies for red-black coarsening in two
dimensions.

Note that for pattern relaxations such as ω-RB Jacobi the Fourier components
are no longer eigenfunctions. However, the minimal invariant subspaces for ω-RB
Jacobi are two-dimensional; see [18]. Each component ϕh(θ,x) is coupled only with

ϕh(θ̂,x), where

θ̂j := θj − sign (θj)π, with j ∈ J .

Note that ω-RB Jacobi couples those Fourier components that alias on the coarse grid
in the case of red-black coarsening. Considering red-black coarsening, the set of low
frequencies (compare with Definitions 1 and 2) is given by

(5.6) ΘRB :=

{
θ ∈ Θ : |θ| :=

d∑
i=1

|θi| ≤
d

2
π

}
.

For d = 2, the set of low frequencies ΘRB is illustrated in Figure 1.
We decompose the set of Fourier frequencies Θ into a direct sum of such two-

dimensional subspaces that are coupled by ω-RB Jacobi:

Θ =
⊕

θ∈ΘRB

{
θ, θ̂

}
.

The Fourier representations of the half-sweep operators which represent the smoothing
steps over the red points (R) and the black points (B) w.r.t. the two-dimensional
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minimal invariant subspaces are given in [19]. They read

S̃R
h (θ, ω) =

1

2

(
A(θ, ω) + 1 A(θ̂, ω) − 1

A(θ, ω) − 1 A(θ̂, ω) + 1

)

and S̃B
h (θ, ω) =

1

2

(
A(θ, ω) + 1 −A(θ̂, ω) + 1

−A(θ, ω) + 1 A(θ̂, ω) + 1

)
,

with A(θ, ω) =A2o(θ, ω), A4o(θ, ω) and A(θ̂, ω) = A2o(θ̂, ω), A4o(θ̂, ω).

The transformation matrix S̃h(θ, ω) for (φh(θ, . ), φh(θ̂, . ))T after one relaxation step
is then given by

(5.7) S̃h(θ, ω) = S̃B
h (θ, ω) S̃R

h (θ, ω).

The four components of the (2 × 2)-matrix S̃h(θ, ω) = (sij)i,j=1,2 read

s11 =
1

4

[
(A(θ, ω) + 1)2 + (A(θ̂, ω) − 1)(1 −A(θ, ω))

]
,

s12 =
1

4

[
(A(θ, ω) + 1)(1 −A(θ̂, ω)) + A(θ̂, ω)2 − 1

]
,

(5.8)

s21 =
1

4

[
(A(θ̂, ω) + 1)(1 −A(θ, ω)) + A(θ, ω)2 − 1

]
,

s22 =
1

4

[
(A(θ̂, ω) + 1)2 + (A(θ̂, ω) − 1)(1 −A(θ, ω))

]
.

5.3. Smoothing factor. In order to measure the smoothing properties of pat-
tern relaxation methods, we adopt the general definition of the smoothing factor
from [11]. Here the “real” coarse grid correction for a two-grid method is replaced
by an “ideal” coarse grid correction operator QH

h which annihilates the low-frequency
error components and leaves the high-frequency components unchanged. QH

h is a pro-
jection operator onto the space of high-frequency components. The Fourier representa-
tion of the ideal coarse grid correction operator w.r.t. the subspaces {φh(θ, . ), φh(θ̂, . )}
(θ ∈ ΘRB) is then given by

(5.9) Q̃H
h (θ) =

(
q(θ) 0

0 q(θ̂)

)
,

where q = 0 for a low argument and 1 otherwise; compare with Definitions 1 and 2.
The smoothing factor μ of the ω-RB Jacobi operator is defined as the worst factor

by which the high-frequency errors are reduced per iteration step. So with ν denoting
the number of relaxation sweeps, and ρ the matrix spectral radius, we have

(5.10) μ(ω) := sup
θ∈ΘRB

{
ν

√
ρ
(
Q̃H

h (θ)S̃ν
h(θ, ω)

)}
.

The smoothing factor can easily be calculated by a computer program which allows for
a numerical determination of optimal relaxation parameters for different coarsening
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Table 5.1

μ(1), ωopt, and associated μ(ωopt) for ν = 1 relaxation sweep.

Left: Doubling along all dimensions, equidistant grid, isotropy, O(h2).
Right: Quadrupling along all dimensions, equidistant grid, isotropy, O(h2).

Doubling (h → 2h)
d μ(1) ωopt μ(ωopt) ωub

2 0.25 1.049 0.16 1.072
3 0.44 1.133 0.23 1.144
4 0.56 1.195 0.28 1.202
5 0.64 1.243 0.31 1.250
6 0.69 1.283 0.35 1.285

Quadrupling (h → 4h)
μ(ω) = μ(1) ωopt μ(ωopt) ωub

0.73 1.315 0.31 1.316
0.81 1.398 0.40 1.393
0.86 1.454 0.45 1.455
0.89 1.496 0.50 1.502
0.90 1.528 0.53 1.519

Left: Doubling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h2).
Right: Quadrupling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h2).

Doubling (h → 2h)
d μ(1) ωopt μ(ωopt) ωub

2 0.125 0.946 0.08 1.033
3 0.125 0.963 0.10 1.033
4 0.125 0.980 0.11 1.033
5 0.125 0.997 0.122 1.033
6 0.15 1.013 0.13 1.04

Quadrupling (h → 4h)
μ(ω) = μ(1) ωopt μ(ωopt) ωub

0.52 1.182 0.22 1.181
0.55 1.190 0.25 1.197
0.57 1.199 0.27 1.207
0.59 1.209 0.29 1.219
0.60 1.219 0.30 1.225

strategies and both types of discretization under consideration. We would like to
emphasize that the optimal relaxation parameter depends on the number of relaxation
steps ν as can be seen from (5.10).

Note that there are explicit (but very lengthy) analytical formulas for the optimal
relaxation parameters ωopt in the case of full coarsening applied to the second-order
discretization [16, 19]. Moreover, there is a close to optimal upper bound ωub [19] for
the optimal relaxation parameters which is given by the following handy expression:

ωopt < ωub =
2

1 +
√

1 − μ(ω = 1)
.

For partial coarsening and especially for the fourth-order discretization, it seems to
be very difficult to derive analytic expressions for ωopt. However, for the second-
order discretization it turned out that ωub is a satisfactory approximation for ωopt

even in the case of partial coarsening and quadrupling (but not necessarily an upper
bound anymore); see Table 5.1, which presents ωopt (optimized for ν = 1) and ωub

for equidistant and non-equidistant grids. This is a nice generalization of the results
from [19]. For the fourth-order discretization this is no longer true, and we have to
stay with the numerically derived values.

From the values in Table 5.2 (optimized for ν = 2), we see that the smoothness
enhancement effect of using optimal relaxation parameters is more prominent and
pronouced with strategy 2. With strategy 1 this enhancement becomes prominent in
the case of nearly isotropic problems (with grids that are equidistant along (d − 2)
or more dimensions). With anisotropic problems where anisotropy is induced by dis-
cretization on grids highly elongated along a single dimension (and dealt with strategy
1), the choice ω = 1 is more suitable—first—because the optimal values themselves
are very close to 1 and therefore do not bring about a substantial enhancement—and
second—the cost of relaxation itself is cut down, which saves CPU time.
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Table 5.2

μ(1), ωopt, and associated μ(ωopt) for ν = 2 relaxation sweeps.

Left: Doubling along all dimensions, equidistant grid, isotropy, O(h2).
Right: Quadrupling along all dimensions, equidistant grid, isotropy, O(h2).

Doubling (h → 2h)
d μ(ω) = μ(1) ωopt μ(ωopt)

2 0.25 1.0107 0.23
3 0.44 1.1136 0.28
4 0.56 1.1832 0.31
5 0.64 1.2356 0.35
6 0.69 1.2771 0.37

Quadrupling (h → 4h)
μ(ω) = μ(1) ωopt μ(ωopt)

0.73 1.3062 0.39
0.81 1.3928 0.46
0.86 1.4507 0.50
0.89 1.4934 0.53
0.90 1.5266 0.56

Left: Doubling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h2).
Right: Quadrupling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h2).

Doubling (h → 2h)
d μ(ω) = μ(1) ωopt μ(ωopt)

2 0.23 0.8490 0.18
3 0.23 0.8682 0.19
4 0.23 0.8858 0.19
5 0.23 0.9022 0.20
6 0.23 0.9174 0.20

Quadrupling (h → 4h)
μ(ω) = μ(1) ωopt μ(ωopt)

0.52 1.1598 0.30
0.55 1.1735 0.31
0.57 1.1864 0.32
0.59 1.1986 0.32
0.60 1.2100 0.33

Left: Doubling along all dimensions, equidistant grid, isotropy, O(h4).
Right: Quadrupling along all dimensions, equidistant grid, isotropy, O(h4).

Doubling (h → 2h)
d μ(ω) = μ(1) ωopt μ(ωopt)

2 0.28 1.0260 0.25
3 0.46 1.1108 0.29
4 0.57 1.1683 0.33
5 0.65 1.2128 0.36
6 0.70 1.2492 0.38

Quadrupling (h → 4h)
μ(ω) = μ(1) ωopt μ(ωopt)

0.76 1.3110 0.40
0.84 1.3782 0.47
0.87 1.4238 0.52
0.90 1.4579 0.55
0.91 1.4847 0.58

Left: Doubling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h4).
Right: Quadrupling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h4).

Doubling (h → 2h)
d μ(ω) = μ(1) ωopt μ(ωopt)

2 0.24 0.8859 0.20
3 0.26 0.8957 0.21
4 0.25 0.9122 0.22
5 0.25 0.9268 0.22
6 0.25 0.9399 0.23

Quadrupling (h → 4h)
μ(ω) = μ(1) ωopt μ(ωopt)

0.59 1.1900 0.35
0.61 1.1942 0.37
0.62 1.2046 0.38
0.64 1.2146 0.38
0.65 1.2243 0.39

6. Numerical experiments. We now present the results of some of our nu-
merical experiments. The emphasis is on grid-induced anisotropies. The PDE is
discretized on various equidistant and non-equidistant grids, and the spectral radius
ρ of the multigrid iteration operator Mh is presented, which represents the asymptotic
convergence factor. During the course of an experiment the only quantity available
to estimate this factor is the defect dih after the ith multigrid cycle. The numerical
results—presented in Tables 6.1–6.4—depict a close match between the theoretical
smoothing factors μ (computed for coarsening based on the finest grid) and an em-
perical estimate of the multigrid convergence factor ρ(Mh), which we denote by qm

and define as

qm :=
‖ dmh ‖

‖ dm−1
h ‖

,
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where m represents the number of iterations or multigrid cycles that the discrete
problem takes to converge to the numerical solution.

All of the experiments employ one pre- and one postsmoothing, and so the smooth-
ing factor is displayed as a square for a correspondence with qm; compare with (5.10).
The optimal relaxation parameters ωopt that we employ are computed for ν = 2. For
each order of accuracy and for each dimension, we have chosen two kinds of grid,
one equidistant and one non-equidistant (highly stretched in one dimension). qm is
displayed against the number of multigrid cycles that the experiment took to converge
to the tolerance value, which for all of the experiments is 10−10, i.e.,

||bh − Ahu
m
h ||

||bh||
| ≤ tol.

This termination criterion is equivalent to the one based on relative residual reduction
because our starting soluton in these experiments is always an all zero vector. More-
over this criterion corresponds to a residual reduction by ≈ 7 orders of magnitude.
Through the numerical solution of the model problem we approximate the following
test function:

(6.1) u(x) =

∑d
i=1 sin(dπ2xi)

dπ +
∑d

i=1 xi

,

εi = 1 ∀ i, and Ω = (0, 1)d for all of the problems. The values of this function at the
boundary are taken as Dirichlet boundary conditions, and its analytically computed
Laplacian forms the source function for these experiments. The experiments include
the V - and the W -cycles. In some of the experiments the grids used for the O(h2)
operator are different from the ones for the O(h4) operator. This serves only the
purpose of accumulating results for slightly different-sized experiments. C2

2 indicates
the use of the second-order stencil along all coarsened and noncoarsened dimensions;
likewise for C4

4 . C4
2 indicates the use of the O(h4) long stencil along all noncoarsened

dimensions and the use of the O(h2) stencil on the coarse grids along the dimensions
where coarsening takes place. This hybrid coarse grid discretization gives fourth-order
accuracy and converges faster than the conventional fourth-order long stencil.

Table 6.1 presents experimental results for equidistant grids. A comparison of
the convergence results with and without optimal relaxation parameters indicates the
benefits of using them for high-dimensional problems. The cutdown in the multigrid
convergence factor as well as in the number of multigrid cycles (required to converge
to tol) is quite significant for d ≥ 3.

Table 6.2 presents experimental results for non-equidistant grids which we have
chosen to be highly stretched in only one dimension. Because of this characteristic
these experiments are computationally more expensive than any other as coarsening
takes place only along the elongated dimension. This is exactly the opposite of the
previous case, where coarsening took place along all dimensions, and hence the cut-
down in the number of unknowns at each level was optimal. In this table we display
the results that we get from strategy 1, which is based purely on h → 2h transfers.
Optimal relaxation parameters in this case pay off only with V -cycles, with ω = 1
serving as a perfect compromise with W -cycles.

In Table 6.3 we have reworked the experiments of Table 6.2 but with strategy 2 this
time. Partial quadrupling (strategy 2) ensures an O(Ml) algorithm even with grids
of this type. Note that the computational complexity of the experiments in Table 6.2
is O(Ml log2 Ml), even though the multigrid convergence factor is quite impressive
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Table 6.1

Results of numerical experiments for V (1, 1) and W (1, 1) on equidistant grids. The observed
convergence rate with the number of iterations, i.e., (qm/# it.), is presented. For a correspondence
comparison the smoothing factors [μ(1)]2 and [μ(ωopt)]2 (computed for coarsening based on the finest
grid) are also displayed. Results presented include experiments with ω = 1 as well as ω = ωopt.

G = 1282 V W V W

[μ(1)]2 = 0.06 [μ(1.011)]2 = 0.05

O(h2)C2
2 0.10/8 0.06/7 0.09/8 0.05/7

G = 1282 [μ(1)]2 = 0.08 [μ(1.026)]2 = 0.06

O(h4)C4
4 0.13/9 0.10/8 0.12/9 0.08/7

O(h4)C4
2 0.10/8 0.07/7 0.09/8 0.05/7

G = 1283 V W V W

[μ(1)]2 = 0.20 [μ(1.114)]2 = 0.08

O(h2)C2
2 0.22/11 0.18/10 0.12/9 0.07/7

G = 643 [μ(1)]2 = 0.21 [μ(1.111)]2 = 0.08

O(h4)C4
4 0.26/12 0.22/11 0.16/10 0.09/8

O(h4)C4
2 0.24/12 0.21/11 0.13/9 0.07/7

G = 644 V W V W

[μ(1)]2 = 0.32 [μ(1.183)]2 = 0.10

O(h2)C2
2 0.33/14 0.30/12 0.16/10 0.08/7

G = 324 [μ(1)]2 = 0.33 [μ(0.168)]2 = 0.11

O(h4)C4
4 0.39/16 0.34/14 0.20/10 0.11/9

O(h4)C4
2 0.35/15 0.34/14 0.15/9 0.11/8

G = 165 V W V W

[μ(1)]2 = 0.41 [μ(1.236)]2 = 0.12

O(h2)C2
2 0.38/16 0.38/15 0.18/10 0.09/8

G = 86 V W V W

[μ(1)]2 = 0.48 [μ(1.277)]2 = 0.14

O(h2)C2
2 0.35/15 0.34/15 0.12/9 0.11/9

there. These results show the important role of optimal relaxation parameters in
enhancing convergence of the multigrid with quadrupling transfers.

To make the discussion complete we have included some more experiments on
a nearly equidistant grid. The results are reported in Figure 2. The convergence
report is depicted against the iteration scale as well as against the CPU time scale. A
comparison of the results of strategies 1 and 2 suggests that, for these kind of grids,
a combination of strategy 2 with V -cycles and optimal relaxation parameters works
very nicely.

A graphical presentation of the convergence behavior of an isotropic 4-dimensional
multigrid experiment appears in Figure 3. The defect reduction is displayed against
the iteration and the CPU time scale. To emphasize the inefficiency of full quadrupling
with completely equidistant grids, we have included the results against full doubling.
Clearly enough, here standard coarsening is the strategy of choice. This is the main
reason why we do not keep quadrupling transfers in strategy 2, once grid equidistance
has been achieved, but rather resort to doubling from this stage onwards. Quadrupling
along all dimensions at the same time hampers the multigrid convergence rate as well
as increasing the overall computation time.

Finally, we have performed two general 5-dimensional anisotropic experiments.
For the first experiment the anisotropy comes only from discretization on a non-
equidistant grid; and the results appear in Figure 4, the sequence of grids that we get
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Table 6.2

Results of numerical experiments for V (1, 1) and W (1, 1) with strategy 1 on grids stretched
along 1 dimension. The observed convergence rate with the number of iterations, i.e., (qm/# it.), is
presented. For a correspondence comparison the smoothing factors [μ(1)]2 and [μ(ωopt)]2 (computed
for coarsening based on the finest grid) are also displayed. Results presented include experiments
with ω = 1 as well as ω = ωopt.

G = 512 × 32 V W V W

[μ(1)]2 = 0.05 [μ(0.835)]2 = 0.03

O(h2)C2
2 0.06/8 0.003/4 0.06/8 0.03/6

G = 512 × 32 [μ(1)]2 = 0.06 [μ(0.879)]2 = 0.04

O(h4)C4
4 0.10/8 0.03/6 0.09/8 0.07/7

O(h4)C4
2 0.10/7 0.02/6 0.05/7 0.04/6

G = 512 × 322 V W V W

[μ(1)]2 = 0.05 [μ(0.835)]2 = 0.03

O(h2)C2
2 0.20/11 0.005/4 0.12/9 0.03/6

G = 128 × 322 [μ(1)]2 = 0.06 [μ(0.978)]2 = 0.06

O(h4)C4
4 0.24/11 0.04/6 0.17/9 0.05/6

O(h4)C4
2 0.17/10 0.04/6 0.11/8 0.04/6

G = 128 × 83 V W V W

[μ(1)]2 = 0.05 [μ(0.836)]2 = 0.03
O(h2)C2

2 0.20/11 0.007/4 0.11/8 0.04/5

G = 128 × 323 [μ(1)]2 = 0.06 [μ(1.9121)]2 = 0.05

O(h4)C4
4 0.33/13 0.04/6 0.21/9 0.06/6

O(h4)C4
2 0.27/12 0.05/6 0.15/9 0.03/6

G = 128 × 84 V W V W

[μ(1)]2 = 0.05 [μ(0.837)]2 = 0.03

O(h2)C2
2 0.24/12 0.009/4 0.11/8 0.04/6

G = 128 × 85 V W V W

[μ(1)]2 = 0.05 [μ(0.837)]2 = 0.03

O(h2)C2
2 0.27/13 0.009/5 0.12/9 0.04/6

with both coarsening strategies are displayed in section 4.2, (4.1). It is quite apparent
that the use of optimal relaxation parameters pays off significantly well with V -cycles
in combination with strategy 1 (ω = 1 serving as a perfect choice for W -cycles) and
with both V - and W -cycles with strategy 2. The second experiment is more general
in that it has anisotropic coefficients εi in the PDE, it is discretized on the same non-
equidistant finest grid, and the domain dimensions are not exactly unit. The results
are displayed in Table 6.4. Clearly, V -cycles with optimal weighting in the relaxation
process coupled with either coarsening strategy give excellent results. We would like
to point out that we expect strategy 1 to be more dependable than strategy 2 if the
number of dimensions coarsened on the finest grid is greater than d/2.

We have used Matlab as our testing platform; the same experiments implemented
in C (in more optimized computer programs) are expected to render smaller CPU
times than those presented.

Remark 1. The multigrid convergence factors displayed in the tables are mostly
under 0.1, implying that a full multigrid algorithm starting on the coarsest grid is
expected to reach an approximate solution up to the discretization accuracy in just
one or two cycles.

Remark 2. It is also important to point out that, for very coarse discretization
grids (say, 8 points along all dimensions), the asymptotic convergence of the relaxation
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Table 6.3

Results of numerical experiments for V (1, 1) and W (1, 1) with strategy 2 on grids stretched
along 1 dimension. The observed convergence rate with the number of iterations, i.e., (qm/# it.), is
presented. For a correspondence comparison the smoothing factors [μ(1)]2 and [μ(ωopt)]2 (computed
for coarsening based on the finest grid) are also displayed. Results presented include experiments
with ω = 1 as well as ω = ωopt.

G = 512 × 32 V W V W

[μ(1)]2 = 0.25 [μ(1.147)]2 = 0.09

O(h2)C2
2 0.27/13 0.24/11 0.14/10 0.08/9

G = 512 × 32 [μ(1)]2 = 0.32 [μ(1.190)]2 = 0.12

O(h4)C4
4 0.34/14 0.31/13 0.20/10 0.13/8

O(h4)C4
2 0.31/13 0.30/13 0.12/9 0.09/7

G = 512 × 322 V W V W

[μ(1)]2 = 0.25 [μ(1.147)]2 = 0.09

O(h2)C2
2 0.30/13 0.24/11 0.17/13 0.08/10

G = 128 × 322 [μ(1)]2 = 0.37 [μ(1.194)]2 = 0.14

O(h4)C4
4 0.34/14 0.35/14 0.22/10 0.13/9

O(h4)C4
2 0.34/14 0.35/14 0.16/9 0.12/8

G = 128 × 83 V W V W

[μ(1)]2 = 0.25 [μ(1.148)]2 = 0.09

O(h2)C2
2 0.32 0.24/11 0.16/13 0.08/10

G = 128 × 323 [μ(1)]2 = 0.39 [μ(1.205)]2 = 0.14

O(h4)C4
4 0.38/16 0.37/15 0.24/11 0.14/9

O(h4)C4
2 0.38/16 0.36/14 0.22/11 0.12/8

G = 128 × 84 V W V W

[μ(1)]2 = 0.26 [μ(1.149)]2 = 0.09

O(h2)C2
2 0.35/15 0.24/11 0.17/13 0.08/10

G = 128 × 85 V W V W

[μ(1)]2 = 0.26 [μ(1.150]2 = 0.09

O(h2)C2
2 0.38/16 0.24/11 0.18/13 0.08/10

Table 6.4

A general 5d experiment on a non-equidistant grid G = [32 8 8 128 32]. The do-
main Ω = (0.11, 1.21) × (0.5, 1.51) × (0.25, 1.26) × (0, 1) × (0, 1.11), and constant coefficients
c = [200.33, 10−7, 2, 1.5, 200.49].

Strategy 1 V W V W

[μ(1)]2 = 0.08 [μ(1.031)]2 = 0.058

O(h2)C2
2 0.13/11 0.07/9 0.08/9 0.058/8

Strategy 2 V W V W

[μ(1)]2 = 0.55 [μ(1.319)]2 = 0.16

O(h2)C2
2 0.53/31 0.53/31 0.16/11 0.14/11

method ω-RB Jacobi is also quite satisfactory. To confirm this, we conducted a 6-
dimensional asymptotic convergence experiment without a hierarchy of multiple grids
and measured the number of iterations and the time taken to reach the tolerance
(10−10). Though the use of multigrid cuts down the number of iterations by around
a factor of 2.5, the time taken to meet the tolerance level is the same.

7. Conclusion. The central emphasis of this paper is on multigrid techniques
for high-dimensional elliptic PDEs. To alleviate the implementation issues we have
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Fig. 2. Convergence behavior of different multigrid cycles for a 4d problem, on a non-equidistant
grid [64 64 64 16] (anisotropy with 3,750,705 unknowns), left side defect vs. iterations, right side
defect vs. CPU time.

shown how difference operator matrices can be put together through tensor methods.
This renders testing in abstract higher d dimensions easy. Of course, tailored rou-
tines (for specific applications) can be programmed and tuned as per requirement.
The main idea has been to demonstrate how the multigrid convergence factor can
be reduced efficiently with appropriate coarsening strategies combined with the use
of relaxation parameters in the smoothing process. Through numerical results sup-
ported by the LFA we have shown that partial quadrupling is a strategy of choice
in higher dimensions and ensures a computational complexity of O(Ml) even in the
worst case, i.e., coarsening in one dimension only. This we have confirmed through
a complexity analysis. Results of the numerical experiments display the excellent
multigrid convergence that can be brought about with the presented strategies.

Appendix A. Implementational aspects of ω-RB Jacobi. ω-RB Jacobi
can be implemented in several ways depending on the test platform. We have here
a method that is suitable for iterations over a solution vector as opposed to explicit
updates in a loop. The scheme that we present in this appendix is developed to bring
about the odd-even (red-black) partitioning with minimal manipulation of the grid
points.

We store three vectors in this scheme (two of which have just half the storage
requirement as the first one). The first vector is the unmanipulated vector (henceforth
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Fig. 3. Convergence behavior of different multigrid cycles for a 4d problem, on an equidistant
grid 324 (isotropy with 923,521 unknowns), left side defect vs. iterations, right side defect vs. CPU
time.

called the main vector) containing values for all grid points (red as well as black); the
second vector has the values at the black points ejected out and replaced with zeros.
Symmetrically, the third has the values at the red positions ejected out and replaced
by zeros. This ejection process is actually where our injection operators (henceforth
called ejectors) fit in.

First we construct the partition of the main vector storing the red and the black
parts; then we carry out the first partial ω-Jacobi sweep by updating only the red part.
This new red part along with the previously stored black part represents the main
vector after the first partial sweep. Carrying out the second partial sweep in exactly
the same manner, now for the black part instead, gives one ω-RB Jacobi iteration.

We present two injection operators, one for points of each color (even/odd cate-
gory). We denote these ejectors by ER and EB , with

ER =

( d⊕
i=1

η(d−i+1)

)
mod 2,

EB = (ER + 1) mod 2.⊕
is the cumulative tensor sum of ηi, which counts the interior points along the ith

dimension (see (3.9)); i has the reverse order (from d to 1) to match the lexicographic
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Fig. 4. Convergence behavior of different multigrid cycles for a 5d problem, on a non-equidistant
grid [32 8 8 128 32] (anisotropy with 5,980,303 unknowns), left side defect vs. iterations, right side
defect vs. CPU time.

layout of the grid points. Due to space limitations we can provide only a 2d example,
although this formulation is true in general for an abstract higher dimension d.

Example 2. Consider a 2d grid G = [4, 5]. In all we have 12 interior points,
which, when counted in the lexicographic order, appear as follows:

u = [u11 u12 u13 u14 u21 u22 u23 u24 u31 u32 u33 u34]
T .

Evidently, G, the collection of all of the points, has the following partition:

GR = {u11, u13, u22, u24, u31, u33},
GB = {u12, u14, u21, u23, u32, u34}.

Therefore according to our scheme

uR = [ u11 0 u13 0 0 u22 0 u24 u31 0 u33 0 ]T ,
uB = [ 0 u12 0 u14 u21 0 u23 0 0 u32 0 u34 ]T ,

and ηi in this case would be

η1 = [1 2 3 4]T and η2 = [1 2 3]T ,



1636 H. BIN ZUBAIR, C. W. OOSTERLEE, AND R. WIENANDS

which leads to

ER = (η2 ⊕ η1) mod 2
= [2 3 4 5 3 4 5 6 4 5 6 7]T mod 2
= [0 1 0 1 1 0 1 0 0 1 0 1]T

∴ EB = [1 0 1 0 0 1 0 1 1 0 1 0]T .

These red and black point ejectors now can be used to partition the grid as
described. Once this partition is obtained, ω-RB Jacobi relaxation sweeps are trivial
to perform, in that they are no different than their 2d counterparts.
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